
ARBEITSPAPIERE
WORKING PAPERS
NR. 16, JANUARY 2017

PEDESTRIAN MOVEMENT GRAPH ANALYSIS

EKATERINA FUCHKINA

ISSN 2191-2416

Informatik in der Architektur | InfAR

Bauhaus-Universität Weimar, Professur Informatik in der Architektur, Belvederer Allee 1, 99421 Weimar
Fon: +49/3643/584201, caad@architektur.uni-weimar.de, http://infar.architektur.uni-weimar.de

Ekaterina Fuchkina
Pedestrian movement graph analysis

Supervisors:
Vertr.-Prof. Dr.-Ing. Sven Schneider
Ing. Arch. Martin Bielik
M.Arch. Abdulmalik Abdulmawla

Weimar 2016
Arbeitspapiere (Working Papers) Informatik in der Architektur, Nr. 16
Herausgegeben von Prof. Dr. Dirk Donath und Jun.-Prof. Dr. Reinhard König
ISSN 2191-2416

Bauhaus-Universität Weimar
Professur Informatik in der Architektur und Junior-Professur Computational Architecture
Belvederer Allee 1, 99425 Weimar
http://infar.architektur.uni-weimar.de
www.uni-weimar.de/computational-architecture

Titelbild: Jugendstil-Wendeltreppe im Hauptgebäude © Bauhaus-Universität Weimar

Pedestrian movement graph analysis

Ekaterina Fuchkina
ekaterina.fuchkina@uni-weimar.de

Professur Informatik in der Architektur
Fakultät Architektur, Bauhaus-Universität Weimar, Belvederer Allee 1, 99421 Weimar, Germany

Abstract

Development of sustainable urban environments assumes processing of large amount of data from

various sources. It could be field study observations, results of simulations or information provided by

modeling. This paper focuses on processing modeled data of pedestrian movement based on existed

axial maps of particular environment. Introduced component allows further analysis by calculation of

set of metrics based on inverted graph, which is built from given paths.

Keywords: Space Syntax, Computational Design, Pedestrian movement

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

1

1. Component description

The "CityGraph" component is created for GrasshopperTM graphical algorithm editor in Rhino

5 environment. Component is a set of tools for analyzing a pedestrian movement. The main

approach is based on representation of the city network as inversion of a simple axial map

(Dawes 1926) and calculation of graph’s various metrics, such as: Betweenness Centrality,

Closeness Centrality, Gravity, Weighted Betweenness, Degree Centrality (Kalvo 2015).

Figure 1: Overview of component setup

Figure 2: Graphical output of betweenness centrality calculation of city network

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

2

2. Conceptual description of algorithm. Motivations.

Due to huge amount of incoming graphical information about existing roads, sidewalks and

footpaths it is hard to check if the data is correct and full. For example, cases on Figure 3 can

arise.

Figure 3: Problems with input data

 Problem 1. Handle with incorrect and incomplete data

The first solution to problems of Figure 3 is - if some points of origin/destination are given

and if direct line between them doesn’t not intersect any obstacle, then this line can be

named as solution for a shortest path task for these points, even if originally there is no such

path information. Figure 4c shows that such solution provides more correct result (in terms

of "the shortest" measure) and close to more realistic movement than Figure 4b.

(a) Situation whith center
lines, which are used for

calculations,

(b) Red polyline is the shortest
path between points based on

given geometry

(c) Red line is the shortest
path between points based

on generated geometry

Figure 4: Problem of shortest path calculation with incorrect data

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

3

However, if in-between given points there are obstacles (Figure 5a) - other approach should

be used, which is more general. The idea is to generate sample points (divide current path

segments) by some distance and generate connection lines between them and existed ones

(existed are points of end/start of path segments). This will give approximation of possible

short movements through given space (or visibility from each point). Figure 5c shows new

generated paths and Figure 5d shows shortest path between given points based on generated

geometry. Hence, the denser sample points the more accurate the solution. This approach

increases amount of path geometry data to process and to reduce it - radius parameter (Rd)

is used (see section 3.1). Within the specified radius, points, to create new shortest (direct

lines) paths, will be taken.

 Problem 2. Handle with unrealistic movements

On Figure 6a there are a two points to find a shortest path in-between and the right solution

– the path is the shortest, but it can be assumed, that in a real situation, especially in

unknown city, it is hard to follow such way, more easier to walk and orient on straight lines.

For this purpose the definition of angular measure is introduced. The angular measure reflects

how much the path is straight (how large, in terms of angles, changing of directions was

along the path) and is combined with geodesic measure with some coefficient to control the

influence. Figure 6b and Figure 6c show the solutions with different coefficients.

(a) Direct connection
cannot be a shortest

path because of
obstacle

(b) Ideal solution for a
shortest path task

(c) Generation of sample
points (blue ones)

and connection paths
between them

(d) Shortest path
solution based on

generated
geometry

Figure 5: General shortest path solution approach

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

4

Figure 7 shows, that shortest path, where angular measure has highest coefficient, has geo-

desic length more than other solutions. More details on angular measure calculation see in

section 2.4.

Figure 7: Shortest path with angular influence

 Problem 3. Handle with angular measure

In case, if for calculation of shortest path only angular measure is used (just sum of angles),

it can be a situation, when neglecting a geodesic length cause a problem. For example, if it

is needed to find the shortest path between segments 1 and 3 on Figure 8a using only angles

as a measure, then it happens that a solution will the sequence 1-2-3 and not the expected

1-3, because the angular distance between segments 1 and 3 is 113°. The sum of angular

distance between segments 1, 2 and 3 is 67°, which is less than in the first case.

(a) Shortest path by
geodesic solutinon with an-

gular influence (0)

(b) Shortest path with half-
angular influence (0.5)

(c) Shortest path with angular
influence (1)

Figure 6: Difference between geodesic shortest path and path with angular measure influence

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

5

,ሺ1ݐݏ݅݀ 2ሻ 	ൌ 	0°	

,ሺ2ݐݏ݅݀ 3ሻ 	ൌ 	67°	

In a real situation to repeat path 1-2-3 as on 8a it is needed to turn back on segment 2 to

reach segment 3, which is 360and, hence, it is incorrect to take 1-2-3 path as the shortest

one. To avoid this case - representation of directions of movement is included as shown on

8b, where path exists only between two segments if end and start (with arrow) points are

coincident. Here the path 1’-3’ is the shortest. (Because the similar path as in the first case

will be the sequence 1’-2’-2”-3’).

This approach needs the step when solutions are merged/reduced, because, for example,

between 1 and 2 segments exist one shortest path (1’-2’), and also solutions for other direc-

tions of same edges, like between 1’ and 2” (shortest path will 1’-2’-2”), and this should be

removed.

Figure 8: Directions influence

 Algorithm illustration

1) Input paths and obstacles information. Figure 9a

2) Finding intersections of paths. (Only for illustration, because real component waits for

paths already intersected to each other). Depending on parameter in component, segments

can be further subdivided. Figure 9b shows that segments were subdivided by length of 1

unit.

Figure 9: Algorithm illustration

(a) Shortest path between 1-3 (b) Shortest path between 1-3 with taking
into account directions

(a) Input data (b) Subdivision of segments

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

6

3) Generating additional paths if corresponding parameter is switched on. Figure 10a shows

that 4 paths were added.

4) Doubling the geometry to introduce directions. Indexing each segment. Figure 10b shows

indexes for segments without directions (It can be assumed that each segment actually is

represented by two lines as id’ and id”)

5) Building inverted graph and assigning the weight/distance to the edges according to de-

fined formula. See section 3.6. For example, we need to calculate the weight for the edge

between vertex(i.e. segment) 3 and vertex(i.e. segment) 10, which more detailed are shown

on Figure 11a.

According to default formula in section 3.6 we need maximum length among segments for

normalization, which is the length of segment 12 and is 2.23 units. Length of segment 3 is 1

unit and segment 10 is of 1,4 unit length and we need for calculation the length between

the center points. Angle between two segments is 45°. By formula, we get the weight, which

is 0.66. For Floyd Warshal algorithm for all vertices shortest path distances are stored in

matrix form as on Figure 11b.

,ሺ3ݐ݄݃݅݁ݓ 10ሻ 	ൌ 	1.0	 ∙ 	 ሺሺ1	 ൅ 	1.4ሻ/2ሻ/2.23	 ൅ 	1.0	 ∙ 	45/360	 ൌ 	0.66

6) According to the input data of origins and destinations shortest paths are extracted from

matrix. Figure 10c.

Figure 10: Algorithm illustration

(a) Additional paths. Length
markers

(b) Indexing (c) Shortest path result

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

7

Figure 11: Building inverted graph

 Definition of origins and destinations

For calculation of all to all results for origins/destinations (o/d) input existed segments can

be taken.

In case more precise definition 2 ways are possible. For example, if take center points out of

building contour as possible o/d, then we can build perpendicular segments to the closest

ones, split it in point of intersection and use the perpendiculars as input for o/d (Figure 12a).

The other way is by selected points choose closest segments (Figure 12b).

First approach generates a lot of additional geometry, in case of changing of selection points

locations whole distance matrix should be rebuild (Section 3.2).

Second approach is easier to compute and changing the selection points do not leads the

matrix re-computation (Section 3.3).

(a) Weight calculation for edge 3-10 (b) Matrix of shortest path distances for Floyd
Warshal algorithm

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

8

Figure 12: Two possibilities of definition of origins and destinations

3. Grasshopper component setup description

 Step 1: Processing inputs. BuildPaths

Input parameters:

Pth* - Path geometry. Non-intersecting (only from/to points) sequen-

tial lines are expected.

Lng - Length of segments subdivision (default = 10000). Used to make

all segments of approximately equal length.

Obs - Obstacles geometry. Lines are expected. This geometry is used

in case of additional short paths generation or visibility graph lines

addition (if Short input parameter is true).

Short - Boolean. Defines is it needed to include generation of new paths/visibility lines or

not.

Tol - Tolerance parameter (default = 0.1). Whenever two curves get close enough within

tolerance, an intersection is assumed.

Rd - Radius parameter. If Short is true, then new paths are checked within this radius.

Output parameters:

Pt - Points extracted from segment ends.

Sg - Segments geometry.

B - "Builder" object. Serves as and object to pass information between steps/components.

(a) Introduce new segments (b) Choose existed segments

Figure 13:
BuildSegmentGraph

component

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

9

 Step 2-1: Build graph - 1st approach. BuildSegmentGraph

This approach assumes that origins/destinations will be segments itself. And further if on step

4 as origins or destinations points geometry will entered, then for this points existed seg-

ments will be assigned, according to which is closer to what.

Input parameters :

B* - "Builder" object.

F - Formula definition.

Ac - List with information about additional cost/weight assigned

to segments.

Output parameters:

B - "Builder" object.

 Step 2-2: Build graph - 2nd approach. BuildFullGraph

This approach assumes that origins/destinations will be points and to define origin/destina-

tion segments perpendicular lines from this points to the closest existed segments are built

and are added to the paths information.

Input parameters :

B* - "Builder" object.

All* - All points which will further be assigned as origins/destina-

tions. Usually can be obtained as center point of buildings.

F - Formula definition.

Ac - List with information about additional cost/weight assigned

to segments.

Output parameters:

B - "Builder" object.

Figure 14:

BuildSegmentGraph

component

Figure 15:
BuildFullGraph

component

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

10

 Step 3: Run Floyd Warshal algorithm. ShortestFloydWarshal

Input parameters :

B* - "Builder" object.

Pr - Degree of parallelism. (default = 8)

R - Radius parameter to define within which distance calculate shortest

paths.

Output parameters:

B - "Builder" object.

 Step 4: Metrics calculation. FWGetPaths

Origins and Destinations could be specified as combined in-

put, for instance, for O it is Points and for D it is lines, how-

ever, it is possible only for the 2nd approach. For the 1st

approach only points are available for the input.

Input parameters:

B* - "Builder" object.

O* - Origins geometry (Lines/Points).

D* - Destinations geometry (Lines/Points).

OW - List of weights of origins. Used in calculations of

Weighted Betweenness measure (See formula 6).

DW - List of weights of destinations. Used in calculations of Gravity and Weighted Btween‐

ness measure (See formulas 5 and 6).

Beta - Parameter used in calculations of Gravity and Weighted Betweenness measure (See

formulas 5 and 6).

Mask - String of boolean flags which defines the set of output parameters will be calculated.

(Default "0011111", where the last "1" bit is corresponds to "BC" output, second is for "CC"

and so on, the last "zero" bit is for "Pth" output.)

Output parameters:

BC - Betweenness Centrality measure. (See section 4.5)

Figure 16:
ShortestFloydWarshal

component

Figure 17: ShortestFloydWarshal
component

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

11

CC - Closeness Centrality measure. (See section 4.5)

GW - Gravity measure. (See section 4.5)

BW - Weighted Betweenness measure. (See section 4.5)

Deg - Degree Centrality measure. (See section 4.5)

SG - Supplementary geometry is lines which will show to which segment point is corresponds

if Step 2-1 is chosen and as origin/destination points geometry are entered.

Pth - Tree structure output of all shortest paths.

 Formula definition for step 2

Formula definition assumes combination and manipulation of three parameters: Angular

measure, Length measure and some user measure assigned to the edge (two adjacent seg-

ments as graph it is inverted axial map). All three parameters could be manipulated by coef-

ficients. By default formula is:

	ࢇ࢒࢛࢓࢘࢕ࡲ ൌ 	૚. ૙	 ∙ 	ࢎ࢚ࢍ࢔ࢋࡸ	 ൅ 	૚. ૙	 ∙ 	ࢋ࢒ࢍ࢔࡭	 ൅ 	૙. ૙	 ∙ ࢓ࢇ࢘ࢇࡼ࢘ࢋ࢙ࢁ	 (1)

where Length is the geodesic length between segments’ center points normalized by largest

length and Angle is angle in degrees between two segments normalized by 360. UserParam

is not calculated by default, but it could be any list of user defined weights associated to the

edge of inverted graph (see Figure 11a)

Figure 18 shows custom C# component "Formula", which allows to change formula equation.

It takes 3 coefficients-parameters according to the parameters in formula and returns func-

tion object. Below is code of the component.

private void RunScript(double Angle_Coeff, double Length_Coeff,

double Supp_Coeff, ref object formula)

{

this.ac = Angle_Coeff;

this.lc = Length_Coeff;

this.sc = Supp_Coeff;

// return value should be a function with 3 double input values

Figure 18: Formula definition

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

12

// and with output double value

formula = (Func<double, double, double, double>) this.Result;

}

public double ac = 1;

public double lc = 1;

public double sc = 0;

public double Result(double length, double angle, double custom)

{

return this.lc * length + this.ac * angle + this.sc * custom;

}

4. Component workflow description

 Step 1: Processing inputs. (BuildPaths)

 Builder object is created

 Long segments are subdivided by defined length parameter(Lng)

 If (Short) parameter is true then new paths (visibility segments) are added

 All input segments are doubled to represent two possible directions of movement

 Step 2-1: Build graph - 1st approach. (BuildSegmentGraph)

 Copy Builder object

 Assign id to every segment

 Build graph with weighting formula. Graph structure stored in next matrices:

– adj_matrix - for each id pair the result of formula calculation is stored as dou-

ble value.

– adj_matrix_obj - for each id pair the Cost object is stored (angle and geodesic

length separately)

 Step 2-2: Build graph - 2nd approach. (BuildFullGraph)

 Copy Builder object

 Build perpendicular lines from points to the closest segments and subdivide the seg-

ments in the intersection point.

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

13

 Add doubled representation of new perpendicular lines; remove and then add again

the subdivided lines (segments which are split by intersection point).

 Assign id to every segment

 Build graph with weighting formula. Graph structure stored in next matrices:

 adj_matrix - for each id pair the result of formula calculation is stored as dou-

ble value.

 adj_matrix_obj - for each id pair the Cost object is stored (angle and geodesic

length separately).

 Step 3: Run Floyd Warshal algorithm. (ShortestFloydWarshal)

On this step Floyd Warshal (Silva 2014, Schiavoni 2008) algorithm is launched for the ob-

tained matrices on step 2. Depending on is radius defined or not two slightly different algo-

rithms are implemented. This step produces next matrices:

 dist_matrix - for each id pair shortest distance (sum of weights) is stored

 dist_real_length_matrix - for each id pair shortest geodesic distance is stored

After, all doubled segments and their values in matrices are merged into reduced matrices

versions (See section 2.3).

 Step 4: Metrics calculation. (FWGetPaths)

On this step different measures are calculated based on input of origins and destinations.

Betweenness Centrality (Freeman 1977)

Quantifies the number of times a node acts as a bridge along the shortest path between two

other nodes.

ሺ࢜ሻ࡯࡮ ൌ 	∑ ࢙࢚࣌ሺ࢜ሻ࢙ஷ࢚ஷ࢜∈ࢂ (2)

Where ߪ௦௧ is total number of shortest paths from node ݏ to node ݐ and ߪ௦௧ሺݒሻ is the number

of those paths that pass through ݒ.

Closeness Centrality (Bavelas 1950)

Is the average length of the shortest path between the node and all other nodes in the graph.

Thus the more central a node is, the closer it is to all other nodes.

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

14

ሺ࢙ሻ࡯࡯ ൌ 		
࣐࢙࢚
૛.૞

∑ ࢂ∋ሺ࢙,࢚ሻ࢚ಯ࢙ࢊ
 (3)

where ݀ሺݏ, and ݐ to node ݏ ሻ is a distance (metric or non-metric) of shortest path from nodeݐ

߮௦௧ is total number of shortest paths which is reachable from ݏ. In case of zero sum of

distanses other formula is used (it happens when only angular measure is used and all paths

are on straight line. Such case is rare, but appears during the radius filtering, which remains

some parts of straight regions).

ሺ࢙ሻ࡯࡯ ൌ 	
࣐࢙࢚
૙.૙૚

 (4)

Gravity (Kalvo 2015)

The Gravity measure assumes that accessibility at Origin ݏ is proportional to the attractiveness

(weight) of destinations ݐ, and inversely proportional to the distances between ݏ and ݐ.

ሺ࢙ሻࡾࡳ ൌ 	∑
ሾ࢚ሿࢊࢃ

ࢻ

ࢂ∋ሺ࢙,࢚ሻ࢚ஷ࢙ࢊ∙ࢼࢋ (5)

where ௗܹሾݐሿ is the weight of Destination ݐ, ݀ሺݏ, ሻ is a distance (metric or non-metric) ofݐ

shortest path from node ݏ to node ߙ .ݐ is the exponent that can control the destination

Weight or attractiveness effect, and ߚ is the exponent for adjusting the effect of distance

decay.

Weighted Betweenness (Kalvo 2015)

Take into account both attractiveness of Origin and Destination and accumulate it according

to number of times a node acts in shortest path calculation between other nodes.

ሺ࢜ሻࢃ࡮ ൌ 	∑
ሾ࢙ሿ࢕ࢃ	∙ሾ࢚ሿࢊࢃ

ࢂ∋ሺ࢙,࢜,࢚ሻ࢙ஷ࢚ஷ࢜ࢊ∙ࢼࢋ (6)

where ௗܹሾݐሿ is the weight of Destination ݐ, ௢ܹሾݏሿ is the weight of Origin ݏ and ݀ሺݏ, ,ݒ ሻ is aݐ

distance (metric or non-metric) of shortest path from node ݏ to node ݐ	through node ݒ.

Degree Centrality (Diestel 2005)

Defined as the number of links incident upon a node (i.e., the number of ties that a node

has).

ሺ࢜ሻ࡯ࡰ ൌ ሺ࢜ሻ	܏܍܌ (7)

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

15

5. Examples and tests

Consider a small situation, which will represent a part of possible city plan with buildings,

some obstacle objects to avoid and given path lines.

Figure 21 illustrates the result of component output with difference in input specification.

All three cases eventually work with segments but the algorithm of determining which seg-

ments become origin or destination is different.

Figure 22 illustrates the result of component output for each input data case with additional

subdivision of each segment. This step allows to achieve homogeneity in geometry and to

provide more accurate results for cases illustrated in Figure 22a and Figure 22c.

Figure 19. Definition of possible origins and destinations. Illustration of Betweenness Centrality measure for
each case.

(a) Segments as input (b) Points as input (center of each
building polygon) subdivide existed
segments and generate new ones

(c) Points as input select existed
segment, closest to each point

Figure 20. Division of segments on equal parts of 1 unit length for each input case. Illustration of Between-
ness Centrality measure for each case.

(a) Segments as input (b) Points as input with subdivision (c) Points as input with selection

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

16

Figure 23 illustrates the result of component output with generation of additional paths ge-

ometry based on subdivision results. There is some object in the center, which specified as

obstacle to prevent generation of new path through it.

Figure 24 shows effects of generated paths on shortest path between two particular points

for three situations: a – shortest path in terms of geodesic measure; b – in terms of combined

angular and geodesic measures; c – in terms of only angular measure.

Figure 25 shows the effect of radius application on generating process of new paths. It allows

to control how far it is reasonable to generate new paths.

Figure 21. Generating additional paths geometry

(a) Segments as input (b) Points as input

Figure 22. Shortest path between two particular points after additional path information is generated

(a) Geodesic measure (b) Geodesic and angular measure (b) Angular measure

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

17

Considering examples, which are closer to the real cases, there is provided result of analyzing

of a city plan of Bad Berka town.

First example, demonstrates 1st approach and uses center points of buildings as origins/des-

tinations (Figure 26). Time of calculation is more than 2 hours. Amount of segments(vertices

of graph) is >7000.

Second example, demonstrates 2nd approach and uses only segments as origins/destinations

(Figure 2). Time of calculation is approximately 9 seconds. Amount of segments(vertices of

graph) is >1200.

Figure 24: Example of 1st approach. Betweenness centrality visualisation.

Figure 23. Radius application for generating new paths

Arbeitspapier Nr. 16 Bauhaus-Universität Weimar | Informatik in der Architektur

18

6. References

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41.

Bavelas, A. (1950). Communication patterns in task-oriented groups. Journal of the acoustical society of America.

Diestel, R., (2005), Graph Theory (3rd ed.), Berlin, New York: Springer-Verlag,

Silva, F. (2014) Floyd Warshall algorithm: All-Pairs Shortest Paths. http://www.dcc.fc.up.pt/~fds/au-
las/CP/1415/Trab1/project1.html.

Dawes, M., & Ostwald, M. J. (1926). Precise Locations in Space: An Alternative Approach to Space Syntax Analysis
using Intersection Points. Architecture Research, 3(1), 1-11.

Schiavoni, V., (2008). Floyd Warshall algorithm: optimization.
http://www.jroller.com/vschiavoni/entry/a_fast_java_implementation_of

Kalvo R. Sevtsuk A. (2015) City Form Lab Help. https://urbanterrainsdigitallab.files.wordpress.com/2015/11/cit-
yformlab_una_eng.pdf.

